Non-complex Symplectic 4-manifolds with B
نویسنده
چکیده
In this paper we give a criterion whether a given minimal symplectic 4manifold with b+2 = 1 having a torsion-free canonical class is rational or ruled. As a corollary, we confirm that most of homotopy elliptic surfaces {E(1)K |K is a fibered knot in S } constructed by R. Fintushel and R. Stern are minimal symplectic 4-manifolds with b + 2 = 1 which do not admit a complex structure.
منابع مشابه
The Space of Symplectic Structures on Closed 4-manifolds
Let X be a 2n−dimensional smooth manifold. A 2−form ω on X is said to be non-degenerate if, for each q ∈ X and for each nonzero vector v in the tangent space TqX, there is a tangent vector v ∈ TqX such that ω(u, v) 6= 0. A symplectic structure onX is a non-degenerate closed 2−form. The fundamental example of a symplectic structure is ω0 = ∑ i dxi ∧ dyi on R = {(x1, y1, ..., xn, yn)}. In fact, b...
متن کاملSymplectic Rational Blowdowns
We prove that the rational blowdown, a surgery on smooth 4-manifolds introduced by Fintushel and Stern, can be performed in the symplectic category. As a consequence, interesting families of smooth 4-manifolds, including the exotic K3 surfaces of Gompf and Mrowka, admit symplectic structures. A basic problem in symplectic topology is to understand what smooth manifolds admit a symplectic struct...
متن کاملOn symplectic 4-manifolds and contact 5-manifolds
In this thesis we prove some results on symplectic structures on 4-dimensional manifolds and contact structures on 5-dimensional manifolds. We begin by discussing the relation between holomorphic and symplectic minimality for Kähler surfaces and the irreducibility of minimal simply-connected symplectic 4-manifolds under connected sum. We also prove a result on the conformal systoles of symplect...
متن کاملQuaternionic Bundles and Betti Numbers of Symplectic 4-manifolds with Kodaira Dimension Zero
The Kodaira dimension of a non-minimal manifold is defined to be that of any of its minimal models. It is shown in [12] that, if ω is a Kähler form on a complex surface (M,J), then κ(M,ω) agrees with the usual holomorphic Kodaira dimension of (M,J). It is also shown in [12] that minimal symplectic 4−manifolds with κ = 0 are exactly those with torsion canonical class, thus can be viewed as sympl...
متن کاملSymplectic Lefschetz fibrations and the geography of symplectic 4-manifolds
This paper is a survey of results which have brought techniques from the theory of complex surfaces to bear on symplectic 4-manifolds. Lefschetz fibrations are defined and some basic examples from complex surfaces discussed. Two results on the relationship between admitting a symplectic structure and admitting a Lefschetz fibration are explained. We also review the question of geography: which ...
متن کامل